Quantum Concepts in Physics: An Alternative Approach to the Understanding of Quantum Mechanics (Konsep Fisika Kuantum: Sebuah Pendekatan Alternatif untuk Pemahaman Mekanika Quantum).
Buku ini diterbitkan pertama kali Tahun 2013 oleh Cambridge University Press.
Judul: Quantum Concepts in Physics: An Alternative Approach to the Understanding of Quantum Mechanics (Konsep Fisika Kuantum: Sebuah Pendekatan Alternatif untuk Pemahaman Mekanika Quantum).
Oleh: Malcolm Longair
Penerbit: Cambridge University Press
Tahun: 2013
Jumlah Halaman: 462 hal.
Pengarang:
Malcolm Longair adalah Emeritus Jacksonian Profesor Filsafat Alam dan Direktur Pengembangan di Laboratorium Cavendish, Universitas Cambridge. Dia telah menjabat berbagai posisi yang sangat dihormati dalam fisika dan astronomi, dan ia telah bertugas di dan diketuai banyak komite internasional, Ia , bekerja dengan baik NASA dan European Space Agency. Dia telah menerima banyak pengakuan atas karyanya, termasuk Pilkington Prize of the University of Cambridge for Excellence in Teaching dan a CBE in the millennium honours list for his services to astronomy and cosmology. Sebelumnya beliau menulis buku yang diterima dengan baik oleh Cambridge University Press mencakup Theoretical Concepts in Physics (2003), The Cosmic Century: A History of Astrophysics and Cosmology (2005) dan High
Energy Astrophysics (2011).
Lingkup Pembahasan:
Buku ini terdiri atas 3 Bagian. Bagian 1 Membahas tentang Penemuan Quanta. Terdiri atas 3 bab. Bab 1 membahas tentang Fisika dan Teori Fisika Tahun 1895, Bab 2 mengemukakan tentang Planck dan radiasi hitam, dan Bab3 tentang Einstain dan Quanta Tahun 1900-1911. Bagian 2 Mengemukakan Masalah Teori Kuantum Lama. Terdiri atas 6 Bab, yaitu Bab 4 s.d Bab 9. Bab 4 Mengemukakan tentang Bohr dan model atom hidrogen, Bab 5 Sommerfeld dan Ehrenfest - generalisasi model Bohr, Bab 6 Koefisien Einstein, prinsip korespondensi Bohr dan aturan seleksi pertama, Bab 7 Memahami spektra atom - bilangan kuantum tambahan, Bab 8 Model Bohr dari tabel periodik dan asal spin, dan Bab 9 Dualitas gelombang-partikel. Bagian 3 Mengemukakan Masalah Penemuan Mekanika Kuantum. Bagian 3 ini terdiri atas 9 Bab, yaitu Bab 10 s.d Bab 18. Bab 10 mengemukakan masalah Runtuhnya Teori Kuantum Lama dan Benih Teori Regenerasi, Bab 11 Terobosan Heisenberg, Bab 12 Mekanik Metrik, Bab 13 Mekanika kuantum Dirac, Bab 14 Schrodinger dan gelombang mekanik, Bab 15 Reconcilingmatrix dan gelombang mekanik, Bab 16 Apin dan Statistik Kuantum, Bab 17 Interpretasi mekanika kuantum, dan Bab 18 Selanjutnya.
Daftar Isi:
Preface page xii
Acknowledgements xvi
Part I The Discovery of Quanta
1 Physics and theoretical physics in 1895 3
1.1 The triumph of nineteenth century physics 3
1.2 Atoms and molecules in the nineteenth century 4
1.3 The kinetic theory of gases and Boltzmann’s statistical mechanics 6
1.4 Maxwell’s equations for the electromagnetic field 11
1.5 The Michelson–Morley experiment and the theory of relativity 13
1.6 The origin of spectral lines 15
1.7 The spectrum of black-body radiation 19
1.8 The gathering storm 23
2 Planck and black-body radiation 24
2.1 The key role of experimental technique 24
2.2 1895–1900: The changing landscape of experimental physics 25
2.3 Planck and the spectrum of black-body radiation 29
2.4 Towards the spectrum of black-body radiation 36
2.5 Comparison of the laws for black-body radiation with experiment 41
2.6 Planck’s theory of black-body radiation 42
2.7 Planck and ‘natural units’ 45
2.8 Planck and the physical significance of h 46
3 Einstein and quanta 1900–1911 48
3.1 Einstein in 1905 48
3.2 Einstein on Brownian motion 49
3.3 On a heuristic viewpoint concerning the production and transformation of light
(Einstein 1905a) 50
3.4 The quantum theory of solids 55
3.5 Debye’s theory of specific heats 58
3.6 Fluctuations of particles and waves – Einstein (1909) 60
3.7 The First Solvay Conference 64
3.8 The end of the beginning 67
Part II The Old Quantum Theory
4 The Bohr model of the hydrogen atom 71
4.1 The Zeeman effect: Lorentz and Larmor’s interpretations 71
4.2 The problems of building models of atoms 74
4.3 Thomson and Rutherford 75
4.4 Haas’s and Nicholson’s models of atoms 79
4.5 The Bohr model of the hydrogen atom 80
4.6 Moseley and the X-ray spectra of the chemical elements 83
4.7 The Franck–Hertz experiment 88
4.8 The reception of Bohr’s theory of the atom 89
5 Sommerfeld and Ehrenfest – generalising the Bohr model 90
5.1 Introduction 90
5.2 Sommerfeld’s extension of the Bohr model to elliptical orbits 91
5.3 Sommerfeld and the fine-structure constant 96
5.4 A mathematical interlude – from Newton to Hamilton–Jacobi 99
5.5 Sommerfeld’s model of the atom in three dimensions 109
5.6 Ehrenfest and the adiabatic principle 113
5.7 The developing infrastructure of quantum theory 118
6 Einstein coefficients, Bohr’s correspondence principle and the first selection rules 119
6.1 The problem of transitions between stationary states 119
6.2 On the quantum theory of radiation (Einstein 1916) 120
6.3 Bohr’s correspondence principle 123
6.4 The first selection rules 127
6.5 The polarisation of quantised radiation and selection rules 129
6.6 The Rydberg series and the quantum defect 132
6.7 Towards a more complete quantum theory of atoms 135
7 Understanding atomic spectra – additional quantum numbers 137
7.1 Optical spectroscopy, multiplets and the splitting of spectral lines 137
7.2 The Stark effect 138
7.3 The Zeeman effect 142
7.4 The anomalous Zeeman effect 145
7.5 The Barnett, Einstein–de Haas and Stern–Gerlach experiments 151
8 Bohr’s model of the periodic table and the origin of spin 155
8.1 Bohr’s first model of the periodic table 155
8.2 The Wolfskehl lectures and Bohr’s second theory of the periodic table 157
8.3 X-ray levels and Stoner’s revised periodic table 164
8.4 Pauli’s exclusion principle 168
8.5 The spin of the electron 169
9 The wave–particle duality 172
9.1 The Compton effect 172
9.2 Bose–Einstein statistics 174
9.3 De Broglie waves 177
9.4 Electron diffraction 181
9.5 What had been achieved by the end of 1924 183
Part III The Discovery of Quantum Mechanics
10 The collapse of the old quantum theory and the seeds of its regeneration 189
10.1 Ladenburg, Kramers and the theory of dispersion 189
10.2 Slater and the Bohr–Kramers–Slater theory 194
10.3 Born and ‘quantum mechanics’ 197
10.4 Mathematics and physics in G¨ottingen 200
11 The Heisenberg break through 203
11.1 Heisenberg in G¨ottingen, Copenhagen and Helgoland 203
11.2 Quantum-theoretical re-interpretation of kinematic and mechanical relations
(Heisenberg, 1925) 205
11.3 The radiation problem and the translation from classical to quantum physics 207
11.4 The new dynamics 212
11.5 The nonlinear oscillator 214
11.6 The simple rotator 221
11.7 Reflections 222
12 Matrix mechanics 224
12.1 Born’s reaction 224
12.2 Born and Jordan’s matrix mechanics 226
12.3 Born, Heisenberg and Jordan (1926) – the Three-Man Paper 232
12.4 Pauli’s theory of the hydrogen atom 241
12.5 The triumph of matrix mechanics and its incompleteness 245
13 Dirac’s quantum mechanics 247
13.1 Dirac’s approach to quantum mechanics 247
13.2 Dirac and The fundamental equations of quantum mechanics (1925) 248
13.3 Quantum algebra, q- and c-numbers and the hydrogen atom 255
13.4 Multi-electron atoms, On quantum algebra and a PhD dissertation 259
14 Schrodinger and wave mechanics 261
14.1 Schr¨odinger’s background in physics and mathematics 261
14.2 Einstein, De Broglie and Schr¨odinger 263
14.3 The relativistic Schr¨odinger wave equation 267
14.4 Quantisation as an Eigenvalue Problem (Part 1) 269
14.5 Quantisation as an eigenvalue problem (Part 2) 274
14.6 Wave-packets 281
14.7 Quantisation as an eigenvalue problem (Part 3) 284
14.8 Quantisation as an eigenvalue problem (Part 4) 289
14.9 Reflections 291
15 Reconcilingmatrix and wave mechanics 292
15.1 Schr¨odinger (1926d) 293
15.2 Lanczos (1926) 298
15.3 Born and Wiener’s operator formalism 299
15.4 Pauli’s letter to Jordan 302
15.5 Eckart and the operator calculus 304
15.6 Reconciling quantum mechanics and Bohr’s quantisation of angular momentum – the WKB
approximation 307
15.7 Reflections 310
16 Spin and quantum statistics 312
16.1 Spin and the Land´e g-factor 312
16.2 Heisenberg and the helium atom 315
16.3 Fermi–Dirac statistics – the Fermi approach 318
16.4 Fermi–Dirac statistics – the Dirac approach 320
16.5 Building spin into quantum mechanics – Pauli spin matrices 324
16.6 The Dirac equation and the theory of the electron 327
16.7 The discovery of the positron 338
17 The interpretation of quantum mechanics 343
17.1 Schr¨odinger’s interpretation (1926) 343
17.2 Born’s probabilistic interpretation of the wavefunction ψ (1926) 345
17.3 Dirac–Jordan transformation theory 349
17.4 The mathematical completion of quantum mechanics 355
17.5 Heisenberg’s uncertainty principle 357
17.6 Ehrenfest’s theorem 360
17.7 The Copenhagen interpretation of quantum mechanics 362
18 The aftermath 368
18.1 The development of theory 368
18.2 The theory of quantum tunnelling 372
18.3 The splitting of the atom and the Cockcroft and Walton experiment 375
18.4 Discovery of the neutron 377
18.5 Discovery of nuclear fission 378
18.6 Pauli, the neutrino and Fermi’s theory of weak interactions 379
18.7 Cosmic rays and the discovery of elementary particles 381
18.8 Astrophysical applications 383
Epilogue 388
Notes 389
References 405
Name index 432
Subject index 436
Berminat?
Email: zanetapm@gmail.com
0 comments:
Post a Comment