Wednesday, October 15, 2014

Intestinal Microorganisms of Termites and Other Invertebrates






Intestinal Microorganisms of Termites and Other Invertebrates

Buku ini diterbitkan pertama kali Tahun  2006  oleh  Springer-Verlag Berlin Heidelberg


Judul:  Intestinal Microorganisms of Termites and Other Invertebrates
Oleh: Helmut König & Ajit Varma (Eds.)
Penerbit:  Springer-Verlag Berlin Heidelberg
Tahun: 2006
Jumlah Halaman:  492  hal.

Penulis:
-

Lingkup Pembahasan:

Buku ini terdiri atas 3 Bagian. Masing-masing bagian didukung oleh bab. Jumlah seluruh bab dalam buku ini ada 20 Bab. Setiap Bab dikemukakan topic-topik secara rinci. Bagian I Invertebrata Tanah meliputi:
1)  Biologi Invertebrata Tanah, 2) Interaksi Antara Bakteri dan Nematoda, 3)  Cacing Tanah Gut Mikroba Bioma: Pentingnya mereka untuk Mikroorganisme tanah, Denitrifikasi, dan Produksi Terrestrial dari N2O Gas Rumah Kaca,  4) Usus mikrobiota Kaki seribu,  5) Usus mikrobiota Terrestrial Isopoda,   6) Collembola sebagai Habitat untuk Mikroorganisme,  dan 7) Metana Produksi Terrestrial Arthropoda. 
Bagian II Rayap sebagai Model Organisme mencakup: 8)  Rayap sebagai insinyur Tanah dan Prosesor Tanah,  9) Selulosa Pencernaan di Rayap Gut, 10)  Simbiotik Protozoa dari Rayap, 11) Keanekaragaman dan Lignocellulolytic Kegiatan Budidaya Mikroorganisme, 12) Keanekaragaman dan Molekuler Analisis Namun-digarap Mikroorganisme,  13)  Intestinal Ragi, 14) Termitomyces / Rayap Interaksi,  15) Mikrobiologi Rayap Hill (Mound) dan Tanah, dan 16) Rayap Gut Habitat: Evolusi Its dan Co-Evolution.
Bagian III Metode modern untuk Mempelajari Metode Usus  meliputi 17)   Mikroba Tanah Flora: Pendekatan Novel untuk Mengakses filogenetik dan Fisiologis Keragaman Prokariota,  18) Teknik mikromanipulasi untuk Isolasi Tunggal Mikroorganisme, 19)  Lokalisasi dan Visualisasi Struktur dan Kegiatan mikroba Komunitas di habitat mikro Tanah, dan 20) MIKROSENSOR untuk Studi lingkungan mikro dan Proses dalam usus dari  invertebrata.

Daftar Isi
Part I Soil Invertebrates
1  BiologyofSoilInvertebrates 3
    Gerhard Eisenbeis
    1.1 Introduction   3
    1.2 TheMicrofauna  8
        1.2.1 Protozoa   8
        1.2.2 Nematoda – Roundworms, Eelworms  10
    1.3 TheMesofauna  12
        1.3.1 Pseudoscorpionida – False Scorpions, Book Scorpions 13
        1.3.2 Acari –Mites 14
        1.3.3 Symphyla  17
        1.3.4 Pauropoda 19
        1.3.5 Collembola – Springtails  19
        1.3.6 Protura   23
        1.3.7 Diplura – Double Tails  25
    1.4 TheMacrofauna   26
        1.4.1 Araneida – Spiders   27
        1.4.2 Opiliones – Harvestmen  29
        1.4.3 Terrestrial Isopoda (Oniscoidea) –Woodlice  30
        1.4.4 Chilopoda – Centipedes  33
        1.4.5 Diplopoda -Millipedes   35
        1.4.6 Enchytraeidae –Whiteworms, Potworms  37
        1.4.7 Oligochaeta: Lumbricidae – Earthworms  39
        1.4.8 Terrestrial Gastropoda – Slugs and Snails   41
        1.4.9 Insecta – Pterygote Insects (Short Comments About the Role of Selected Groups of Higher
                    Insects)  42
    1.5 Conclusions  43
    References   47

2  Interactions Between Bacteria and Nematodes 55
    Leo Eberl, David J. Clarke
    2.1 Introduction  55
    2.2 Pathogenic Interactions  55
    2.3 Symbiotic Interactions  57
        2.3.1 Photorhabdus and Xenorhabdus   57
    2.4 Conclusions    62
    References   62
3  EarthwormGut Microbial Biomes: Their Importance to Soil Microorganisms, Denitrification, 
    and the Terrestrial  Production of the Greenhouse Gas N2O    65
    Harold L. Drake, Andreas Schramm, Marcus A. Horn
    3.1 Introduction  65
    3.2 The EarthwormGut as a TransientMicrobial Habitat  65
    3.3 In Vivo and In Situ Emissions of the Greenhouse Gas N2O  by Earthworms 66
    3.4 Microenvironment of the EarthwormGut  69
        3.4.1 The Digestive System of the Earthworm  69
        3.4.2 PhysicochemicalParametersof theGut that Stimulate IngestedMicrobes  70
    3.5 Microbial Processes in the EarthwormGut  72
        3.5.1 Processes Associated with the Production of N2O  72
        3.5.2 Fermentative and OtherMicrobial Processes  75
    3.6 Microbial Populations in the EarthwormGut  76
        3.6.1 Quantitative Population Changes During Gut Passage . 77
        3.6.2 Qualitative Population Changes Upon Gut Passage ..... 78
        3.6.3 The Quest for an Earthworm-Specific Microbial Population  79
    3.7 Conclusions   80
    References   82

4  Intestinal Microbiota of Millipedes 89
    Boris A. Byzov
    4.1 Introduction  89
    4.2 Structure and Function of the Digestive Tract   90
    4.3 Physiological Conditions in the Gut  92
    4.4 Microscope Studies of IntestinalMicrobiota  93
        4.4.1 Bacteria   93
        4.4.2 Yeasts   95
        4.4.3 Mycelial Fungi   95
    4.5 Taxonomic Studies of IntestinalMicrobiota  95
        4.5.1 Bacteria   101
        4.5.2 Fungi    103
    4.6 Functions of the IntestinalMicrobiota    104
        4.6.1 Digestive Functions of GutMicroorganisms  104
        4.6.2 Intestinal Microbiota as a Food forMillipedes    107
        4.6.3 Resistance to Colonization   107
        4.6.4 IntestinalMicrobiota as a Pathogenic Agent   108
    4.7 Digestion ofMicroorganisms byMillipedes   109
        4.7.1 Killing Activity of theMidgut Fluid  109
        4.7.2 Killing Effect  109
        4.7.3 Properties of the Killing Compound(s)  110
        4.7.4 Induced Autolysis  110
        4.7.5 Assimilation ofMicroorganisms  110
    4.8 Conclusions   111
    References    112

5  IntestinalMicrobiota of Terrestrial Isopods 115
    Rok Kostanjšek, Jasna Štrus, Aleš Lapanje, Gorazd Avguštin, Maja Rupnik, Damjana Drobne
    5.1 Introduction   115
    5.2 Structure and Function of the Digestive System   116
    5.3 TheMicrobiota of the Digestive System   119
        5.3.1 Bacteria in the Gut   119
        5.3.2 Fungi and Protozoa in the Gut   122
        5.3.3 Bacteria in theMidgut Glands  123
        5.3.4 Infections of the Digestive System  124
    5.4 Conclusions   125
    References    126

6  Collembola as a Habitat for Microorganisms 133
    Christoph C. Tebbe, Alice B. Czarnetzki, Torsten Thimm
    6.1 Introduction – Diversity and Activity of Collembola    133
    6.2 TheGut of Folsomia candida – anUnusualMicrobialHabitat That Is Affected byMoulting   136
    6.3 Feeding Preferences of Folsomia candida and Fate of Ingested Bacterial Cells  139
    6.4 The Gut of Collembola: a Hot Spot for Conjugative Gene Transfer Between Bacteria  141
    6.5 Diversity of Microorganisms in the Gut of F. candida and Other Collembola  144
    6.6 Collembola Can Harbour the Reproduction Parasite Wolbachia and Other Intracellular
            Bacteria   146
    6.7 Conclusions   149
    References   150

7   Methane Production by Terrestrial Arthropods 155
    Johannes H. P. Hackstein, Theo A. van Alen, Jörg Rosenberg
    7.1 Introduction  155
    7.2 SymbioticMethanogens and Terrestrial Arthropods  156
    7.3 Why Do Certain Arthropods Make Methane and Others Not? 159
    7.4 “Small Is Beautiful”: The Elusive Co-Existence of Aerobes and Anaerobes in Arthropod Guts 167
    7.5 Longitudinal Differentiation of the Intestinal Tract of Methanogenic Arthropods  172
    7.6 Intercompartment Hydrogen Transfer  172
    7.7 Differentiationsof the IntestinalTract toHostMethanogenic Archaea (and Other
          Prokaryotes) 173
    7.8 Biodiversity of Intestinal and Endosymbiotic Methanogens  175
    7.9 Conclusions    176
    References   177

Part II Termites as Model Organisms
8  Termites as Soil Engineers and Soil Processors 183
    David E. Bignell
    8.1 Introduction  183
    8.2 Current State of Termite Science   185
    8.3 Termite Biology and Evolution  190
    8.4 Soil EcosystemEngineers: Is This a Valid Concept? 193
    8.5 Microbial Processing During Gut Transit  198
    8.6 The Special Case of Fungus-Growing Termites  201
    8.7 The Fate of Termite Faeces  203
    8.8 Evidence of the Role of Termites in Pedogenesis and Soil Properties  205
        8.8.1 Soil Profile Development  206
        8.8.2 Bulk Density and Structural Stability of MoundMaterials  207
        8.8.3 Permeability toWater  208
        8.8.4 Soil Chemistry   209
        8.8.5 OrganicMatter Decomposition  209
    8.9 Conclusions   210
    References   212
9  Cellulose Digestion in the Termite Gut 221
    Li Li, Jürgen Fröhlich, Helmut König
    9.1 Introduction   221
    9.2 Termite’s Cellulases   223
    9.3 Microbial Cellulases in the Hindgut   225
    9.4 Cellulose Digestion in the Termite Mastotermes darwiniensis   228
        9.4.1 Termites’ and Flagellates’ Cellulases   228
        9.4.2 Comparison of Termite’s Cellulases  229
        9.4.3 Comparison of Archaezoan Cellulases   235
    9.5 Conclusions   236
    References    238

10 Symbiotic Protozoa of Termites 243
    Guy Brugerolle, Renate Radek
    10.1 Introduction   243
    10.2 Diversity, Cytology and Phylogeny of Symbiotic Protozoa in Lower Termites   243
        10.2.1 Cell Organisation in Oxymonad and Parabasalid Termite Flagellates   244
    10.3 Biology of Termite Flagellates   253
        10.3.1 Relationships Between Flagellates and Host   253
        10.3.2 Populations of Flagellates  256
        10.3.3 Nutrition   257
        10.3.4 EnergyMetabolism/Hydrogenosomes  259
        10.3.5 Motility  260
        10.3.6 Associations with Bacteria  262
    10.4 Conclusion  264
    References   264
11  Diversity and Lignocellulolytic Activities of Cultured Microorganisms 271
    Helmut König, Jürgen Fröhlich, Horst Hertel
   
11.1 Introduction   271
    11.2 Flagellates   272
    11.3 Bacteria   272
    11.4 Archaea   273
    11.5 Yeasts and Fungi   273
    11.6 Microhabitats    281
    11.7 Lignocellulose Degradation  284
        11.7.1 The Hydrolytic Stage of Lignocellulose Degradation    284
        11.7.2 The Oxidative/Fermentative Stage of Lignocellulose Degradation  290
        11.7.3 The Methanogenic/Acetogenic Stage of the Lignocellulose Degradation  290
    11.8 Nitrogen Fixing Bacteria  292
    11.9 Intracellular Symbiosis  293
    11.10 Conclusions  293
    References     294

12   Diversity andMolecular Analyses of Yet-Uncultivated Microorganisms 303
    MoriyaOhkuma, Yuichi Hongoh, Toshiaki Kudo
    12.1 Introduction   303
    12.2 Phylogenetic Identification of Symbiotic Protists  304
    12.3 Methanogenic Archaea . 305
    12.4 Diversity of Eubacteria    305
    12.5 Spatial Organization of Gut Community  309
    12.6 Toward the Function of Gut Symbionts  311
    12.7 Conclusions  313
    References   314

13  The Intestinal Yeasts 319
    Hansjörg Prillinger, Helmut König
    13.1 Introduction  319
    13.2 Morphological Characterization . 319
    13.3 Phenotypic and Genotypic Characterization 322
    13.4 Cellulose and Hemicellulose-Degrading Yeasts 323
    13.5 Evolutionary Considerations  326
    13.6 Conclusions  330
    References  331

14  Termitomyces/Termite Interactions 335
    Corinne Rouland-Lefèvre, Tetsushi Inoue, Toru Johjima
    14.1 Introduction  335
    14.2 Phylogeny and Co-Evolution of Fungus-Growing Termites and Termitomyces  336
        14.2.1 The Symbionts  336
        14.2.2 Evolution of Fungus-Growing Termites and Termitomyces  337
    14.3 The Role of Termitomyces inMutualistic Symbiosis  338
        14.3.1 Nature, Structure and Dynamics of the Fungus Comb. 338
        14.3.2 Role of Termitomyces in the Digestive Metabolism of Termites  340
    14.4 Conclusions  347
    References  347

15  Microbiology of Termite Hill (Mound) and Soil 351
    Rina Kumari, Minu Sachdev, Shweta Sharma, Ram Prasad, Pham Huong Giang, Amar P. Garg, 
    Ajit  Varma
    15.1 Introduction   351
    15.2 Features Distinguishing Termites from Other Insects  352
    15.3 Current Taxonomic Status  352
    15.4 Ecophysiological Distribution 354
    15.5 Termite Colonies and Castes  354
    15.6 Life Cycle 358
    15.7 Topography of the Termite Hill (Mound) and Nest  358
    15.8 Microorganismfromthe Termite Soil   359
    15.9 Soil-Feeding Termites   363
    15.10 Fungus-Growing Termites   364
    15.11 Chemical Nature of Lignocellulose  365
        15.11.1    Cellulose  365
        15.11.2    Hemicellulose  366
        15.11.3    Lignin  367
    15.12 Biodegradation of Biomass 368
    15.13 Conclusions. 369
    References  369

16   The Termite Gut Habitat: Its Evolution and Co-Evolution 373
    Paul Eggleton
    16.1 Introduction  373
    16.2 Background: Some Definitions  373
        16.2.1 Termite Biology  373
        16.2.2 Which Environments?  374
        16.2.3 Community Ecology Definitions   375
    16.3 Biodiversity of Termite Guts  377
    16.4 The Termite Gut Habitat and its Evolution  382
    16.5 Acquisition of Symbionts in Basal Dicytopterans  384
    16.6 Evolution of Key Enzyme Systems: Endoglucanases and Nitrogenases  386
    16.7 Blattabacterium 387
    16.8 Parabasalids 388
    16.9 Termitomyces  392
    16.10 Spirochetes  393
    16.11 Clostridiales  394
    16.12 Archaea   395
    16.13 Conclusions   398
    References   400

Part III Modern Methods for Studying Intestinal Methods
17  TheMicrobial Soil Flora: Novel Approaches for Accessing the Phylogenetic and 

      Physiological Diversity of Prokaryotes   407
      Alexander H. Treusch, Christa Schleper
    17.1 Introduction   407
    17.2 The Modern Classical Approach    408
    17.3 HowMany Prokaryotic Species Live in Soil?  409
    17.4 Molecular Approaches to DescribeMicrobial Diversity   411
    17.5 The Current Picture of Prokaryotic Diversity in Soil    413
    17.6 Studying Physiological Diversity   415
    17.7 Environmental Genomic Studies    417
    17.8 Conclusions   419
    References   420

18  Micromanipulation Techniques for the Isolation of Single Microorganisms 425
    Jürgen Fröhlich, Helmut König
    18.1 Introduction   425
    18.2 Micromanipulation Techniques   426
        18.2.1 Historical Perspective   426
        18.2.2 Modern Equipment  427
    18.3 Isolation Techniques   429
        18.3.1 BactotipMethod   429
        18.3.2 MembraneMethod   431
        18.3.3 Efficiency of the Cloning Procedure   431
        18.3.4 Described Applications   432
    18.4 Laser Micromanipulation Systems   433
        18.4.1 Optical Tweezers    433
        18.4.2 LaserMicrodissection  434
    18.5 Conclusions   434
    References    435

19   Localization and Visualization of Microbial Community Structure and Activity in Soil 
       Microhabitats 439
       Michael Schmid, Draženka Selesi, Michael Rothballer, Michael Schloter, Natuschka Lee, Ellen 
       Kandeler, Anton Hartmann
    19.1 Introduction    439
    19.2 Localization andMicrovisualization Approaches   440
    19.3 In Situ Composition Analysis of Bacterial Communities  442
        19.3.1 The Fluorescence in Situ Hybridization (FISH) Technique
        19.3.2 Recent Developments Towards Improved FISH Techniques   444
        19.3.3 Immunological Techniques    448
    19.4 In Situ Activity ofMicrobial Communities  449
        19.4.1 InSituAssessment of General and SpecificEnzymatic Activities of Cells   449
        19.4.2 Isotope Tracer Techniques  . 450
        19.4.3 Specific Fluorescence Labelling/Tagging Techniques   454
    19.5 Conclusions   455
    References    455
20   Microsensors for the Study ofMicroenvironments and Processes in the Intestine of
       Invertebrates 463

       Andreas Schramm
    20.1 Introduction   463
    20.2 Microsensors Available   463
    20.3 Microsensors in the Study of Invertebrate Guts . 466
    20.4 Practical Considerations  468
        20.4.1 Construction and Purchase of Sensors and Equipment 468
        20.4.2 Fixation of Animals, Gut Preparation andMeasuring Conditions   468
    20.5 Conclusions   470
    References   471
        Subject Index 475

Berminat?
Email: zanetapm@gmail.com


Intestinal Microorganisms of Termites and Other Invertebrates Rating: 4.5 Diposkan Oleh: Unknown

0 comments:

Post a Comment