Intestinal Microorganisms of Termites and Other Invertebrates
Buku ini diterbitkan pertama kali Tahun 2006 oleh Springer-Verlag Berlin Heidelberg
Judul: Intestinal Microorganisms of Termites and Other Invertebrates
Oleh: Helmut König & Ajit Varma (Eds.)
Penerbit: Springer-Verlag Berlin Heidelberg
Tahun: 2006
Jumlah Halaman: 492 hal.
Penulis:
-
Lingkup Pembahasan:
Buku ini terdiri atas 3 Bagian. Masing-masing bagian didukung oleh bab. Jumlah seluruh bab dalam buku ini ada 20 Bab. Setiap Bab dikemukakan topic-topik secara rinci. Bagian I Invertebrata Tanah meliputi:
1) Biologi Invertebrata Tanah, 2) Interaksi Antara Bakteri dan Nematoda, 3) Cacing Tanah Gut Mikroba Bioma: Pentingnya mereka untuk Mikroorganisme tanah, Denitrifikasi, dan Produksi Terrestrial dari N2O Gas Rumah Kaca, 4) Usus mikrobiota Kaki seribu, 5) Usus mikrobiota Terrestrial Isopoda, 6) Collembola sebagai Habitat untuk Mikroorganisme, dan 7) Metana Produksi Terrestrial Arthropoda.
Bagian II Rayap sebagai Model Organisme mencakup: 8) Rayap sebagai insinyur Tanah dan Prosesor Tanah, 9) Selulosa Pencernaan di Rayap Gut, 10) Simbiotik Protozoa dari Rayap, 11) Keanekaragaman dan Lignocellulolytic Kegiatan Budidaya Mikroorganisme, 12) Keanekaragaman dan Molekuler Analisis Namun-digarap Mikroorganisme, 13) Intestinal Ragi, 14) Termitomyces / Rayap Interaksi, 15) Mikrobiologi Rayap Hill (Mound) dan Tanah, dan 16) Rayap Gut Habitat: Evolusi Its dan Co-Evolution.
Bagian III Metode modern untuk Mempelajari Metode Usus meliputi 17) Mikroba Tanah Flora: Pendekatan Novel untuk Mengakses filogenetik dan Fisiologis Keragaman Prokariota, 18) Teknik mikromanipulasi untuk Isolasi Tunggal Mikroorganisme, 19) Lokalisasi dan Visualisasi Struktur dan Kegiatan mikroba Komunitas di habitat mikro Tanah, dan 20) MIKROSENSOR untuk Studi lingkungan mikro dan Proses dalam usus dari invertebrata.
Daftar Isi
Part I Soil Invertebrates
1 BiologyofSoilInvertebrates 3
Gerhard Eisenbeis
1.1 Introduction 3
1.2 TheMicrofauna 8
1.2.1 Protozoa 8
1.2.2 Nematoda – Roundworms, Eelworms 10
1.3 TheMesofauna 12
1.3.1 Pseudoscorpionida – False Scorpions, Book Scorpions 13
1.3.2 Acari –Mites 14
1.3.3 Symphyla 17
1.3.4 Pauropoda 19
1.3.5 Collembola – Springtails 19
1.3.6 Protura 23
1.3.7 Diplura – Double Tails 25
1.4 TheMacrofauna 26
1.4.1 Araneida – Spiders 27
1.4.2 Opiliones – Harvestmen 29
1.4.3 Terrestrial Isopoda (Oniscoidea) –Woodlice 30
1.4.4 Chilopoda – Centipedes 33
1.4.5 Diplopoda -Millipedes 35
1.4.6 Enchytraeidae –Whiteworms, Potworms 37
1.4.7 Oligochaeta: Lumbricidae – Earthworms 39
1.4.8 Terrestrial Gastropoda – Slugs and Snails 41
1.4.9 Insecta – Pterygote Insects (Short Comments About the Role of Selected Groups of Higher
Insects) 42
1.5 Conclusions 43
References 47
2 Interactions Between Bacteria and Nematodes 55
Leo Eberl, David J. Clarke
2.1 Introduction 55
2.2 Pathogenic Interactions 55
2.3 Symbiotic Interactions 57
2.3.1 Photorhabdus and Xenorhabdus 57
2.4 Conclusions 62
References 62
3 EarthwormGut Microbial Biomes: Their Importance to Soil Microorganisms, Denitrification,
and the Terrestrial Production of the Greenhouse Gas N2O 65
Harold L. Drake, Andreas Schramm, Marcus A. Horn
3.1 Introduction 65
3.2 The EarthwormGut as a TransientMicrobial Habitat 65
3.3 In Vivo and In Situ Emissions of the Greenhouse Gas N2O by Earthworms 66
3.4 Microenvironment of the EarthwormGut 69
3.4.1 The Digestive System of the Earthworm 69
3.4.2 PhysicochemicalParametersof theGut that Stimulate IngestedMicrobes 70
3.5 Microbial Processes in the EarthwormGut 72
3.5.1 Processes Associated with the Production of N2O 72
3.5.2 Fermentative and OtherMicrobial Processes 75
3.6 Microbial Populations in the EarthwormGut 76
3.6.1 Quantitative Population Changes During Gut Passage . 77
3.6.2 Qualitative Population Changes Upon Gut Passage ..... 78
3.6.3 The Quest for an Earthworm-Specific Microbial Population 79
3.7 Conclusions 80
References 82
4 Intestinal Microbiota of Millipedes 89
Boris A. Byzov
4.1 Introduction 89
4.2 Structure and Function of the Digestive Tract 90
4.3 Physiological Conditions in the Gut 92
4.4 Microscope Studies of IntestinalMicrobiota 93
4.4.1 Bacteria 93
4.4.2 Yeasts 95
4.4.3 Mycelial Fungi 95
4.5 Taxonomic Studies of IntestinalMicrobiota 95
4.5.1 Bacteria 101
4.5.2 Fungi 103
4.6 Functions of the IntestinalMicrobiota 104
4.6.1 Digestive Functions of GutMicroorganisms 104
4.6.2 Intestinal Microbiota as a Food forMillipedes 107
4.6.3 Resistance to Colonization 107
4.6.4 IntestinalMicrobiota as a Pathogenic Agent 108
4.7 Digestion ofMicroorganisms byMillipedes 109
4.7.1 Killing Activity of theMidgut Fluid 109
4.7.2 Killing Effect 109
4.7.3 Properties of the Killing Compound(s) 110
4.7.4 Induced Autolysis 110
4.7.5 Assimilation ofMicroorganisms 110
4.8 Conclusions 111
References 112
5 IntestinalMicrobiota of Terrestrial Isopods 115
Rok Kostanjšek, Jasna Štrus, Aleš Lapanje, Gorazd Avguštin, Maja Rupnik, Damjana Drobne
5.1 Introduction 115
5.2 Structure and Function of the Digestive System 116
5.3 TheMicrobiota of the Digestive System 119
5.3.1 Bacteria in the Gut 119
5.3.2 Fungi and Protozoa in the Gut 122
5.3.3 Bacteria in theMidgut Glands 123
5.3.4 Infections of the Digestive System 124
5.4 Conclusions 125
References 126
6 Collembola as a Habitat for Microorganisms 133
Christoph C. Tebbe, Alice B. Czarnetzki, Torsten Thimm
6.1 Introduction – Diversity and Activity of Collembola 133
6.2 TheGut of Folsomia candida – anUnusualMicrobialHabitat That Is Affected byMoulting 136
6.3 Feeding Preferences of Folsomia candida and Fate of Ingested Bacterial Cells 139
6.4 The Gut of Collembola: a Hot Spot for Conjugative Gene Transfer Between Bacteria 141
6.5 Diversity of Microorganisms in the Gut of F. candida and Other Collembola 144
6.6 Collembola Can Harbour the Reproduction Parasite Wolbachia and Other Intracellular
Bacteria 146
6.7 Conclusions 149
References 150
7 Methane Production by Terrestrial Arthropods 155
Johannes H. P. Hackstein, Theo A. van Alen, Jörg Rosenberg
7.1 Introduction 155
7.2 SymbioticMethanogens and Terrestrial Arthropods 156
7.3 Why Do Certain Arthropods Make Methane and Others Not? 159
7.4 “Small Is Beautiful”: The Elusive Co-Existence of Aerobes and Anaerobes in Arthropod Guts 167
7.5 Longitudinal Differentiation of the Intestinal Tract of Methanogenic Arthropods 172
7.6 Intercompartment Hydrogen Transfer 172
7.7 Differentiationsof the IntestinalTract toHostMethanogenic Archaea (and Other
Prokaryotes) 173
7.8 Biodiversity of Intestinal and Endosymbiotic Methanogens 175
7.9 Conclusions 176
References 177
Part II Termites as Model Organisms
8 Termites as Soil Engineers and Soil Processors 183
David E. Bignell
8.1 Introduction 183
8.2 Current State of Termite Science 185
8.3 Termite Biology and Evolution 190
8.4 Soil EcosystemEngineers: Is This a Valid Concept? 193
8.5 Microbial Processing During Gut Transit 198
8.6 The Special Case of Fungus-Growing Termites 201
8.7 The Fate of Termite Faeces 203
8.8 Evidence of the Role of Termites in Pedogenesis and Soil Properties 205
8.8.1 Soil Profile Development 206
8.8.2 Bulk Density and Structural Stability of MoundMaterials 207
8.8.3 Permeability toWater 208
8.8.4 Soil Chemistry 209
8.8.5 OrganicMatter Decomposition 209
8.9 Conclusions 210
References 212
9 Cellulose Digestion in the Termite Gut 221
Li Li, Jürgen Fröhlich, Helmut König
9.1 Introduction 221
9.2 Termite’s Cellulases 223
9.3 Microbial Cellulases in the Hindgut 225
9.4 Cellulose Digestion in the Termite Mastotermes darwiniensis 228
9.4.1 Termites’ and Flagellates’ Cellulases 228
9.4.2 Comparison of Termite’s Cellulases 229
9.4.3 Comparison of Archaezoan Cellulases 235
9.5 Conclusions 236
References 238
10 Symbiotic Protozoa of Termites 243
Guy Brugerolle, Renate Radek
10.1 Introduction 243
10.2 Diversity, Cytology and Phylogeny of Symbiotic Protozoa in Lower Termites 243
10.2.1 Cell Organisation in Oxymonad and Parabasalid Termite Flagellates 244
10.3 Biology of Termite Flagellates 253
10.3.1 Relationships Between Flagellates and Host 253
10.3.2 Populations of Flagellates 256
10.3.3 Nutrition 257
10.3.4 EnergyMetabolism/Hydrogenosomes 259
10.3.5 Motility 260
10.3.6 Associations with Bacteria 262
10.4 Conclusion 264
References 264
11 Diversity and Lignocellulolytic Activities of Cultured Microorganisms 271
Helmut König, Jürgen Fröhlich, Horst Hertel
11.1 Introduction 271
11.2 Flagellates 272
11.3 Bacteria 272
11.4 Archaea 273
11.5 Yeasts and Fungi 273
11.6 Microhabitats 281
11.7 Lignocellulose Degradation 284
11.7.1 The Hydrolytic Stage of Lignocellulose Degradation 284
11.7.2 The Oxidative/Fermentative Stage of Lignocellulose Degradation 290
11.7.3 The Methanogenic/Acetogenic Stage of the Lignocellulose Degradation 290
11.8 Nitrogen Fixing Bacteria 292
11.9 Intracellular Symbiosis 293
11.10 Conclusions 293
References 294
12 Diversity andMolecular Analyses of Yet-Uncultivated Microorganisms 303
MoriyaOhkuma, Yuichi Hongoh, Toshiaki Kudo
12.1 Introduction 303
12.2 Phylogenetic Identification of Symbiotic Protists 304
12.3 Methanogenic Archaea . 305
12.4 Diversity of Eubacteria 305
12.5 Spatial Organization of Gut Community 309
12.6 Toward the Function of Gut Symbionts 311
12.7 Conclusions 313
References 314
13 The Intestinal Yeasts 319
Hansjörg Prillinger, Helmut König
13.1 Introduction 319
13.2 Morphological Characterization . 319
13.3 Phenotypic and Genotypic Characterization 322
13.4 Cellulose and Hemicellulose-Degrading Yeasts 323
13.5 Evolutionary Considerations 326
13.6 Conclusions 330
References 331
14 Termitomyces/Termite Interactions 335
Corinne Rouland-Lefèvre, Tetsushi Inoue, Toru Johjima
14.1 Introduction 335
14.2 Phylogeny and Co-Evolution of Fungus-Growing Termites and Termitomyces 336
14.2.1 The Symbionts 336
14.2.2 Evolution of Fungus-Growing Termites and Termitomyces 337
14.3 The Role of Termitomyces inMutualistic Symbiosis 338
14.3.1 Nature, Structure and Dynamics of the Fungus Comb. 338
14.3.2 Role of Termitomyces in the Digestive Metabolism of Termites 340
14.4 Conclusions 347
References 347
15 Microbiology of Termite Hill (Mound) and Soil 351
Rina Kumari, Minu Sachdev, Shweta Sharma, Ram Prasad, Pham Huong Giang, Amar P. Garg,
Ajit Varma
15.1 Introduction 351
15.2 Features Distinguishing Termites from Other Insects 352
15.3 Current Taxonomic Status 352
15.4 Ecophysiological Distribution 354
15.5 Termite Colonies and Castes 354
15.6 Life Cycle 358
15.7 Topography of the Termite Hill (Mound) and Nest 358
15.8 Microorganismfromthe Termite Soil 359
15.9 Soil-Feeding Termites 363
15.10 Fungus-Growing Termites 364
15.11 Chemical Nature of Lignocellulose 365
15.11.1 Cellulose 365
15.11.2 Hemicellulose 366
15.11.3 Lignin 367
15.12 Biodegradation of Biomass 368
15.13 Conclusions. 369
References 369
16 The Termite Gut Habitat: Its Evolution and Co-Evolution 373
Paul Eggleton
16.1 Introduction 373
16.2 Background: Some Definitions 373
16.2.1 Termite Biology 373
16.2.2 Which Environments? 374
16.2.3 Community Ecology Definitions 375
16.3 Biodiversity of Termite Guts 377
16.4 The Termite Gut Habitat and its Evolution 382
16.5 Acquisition of Symbionts in Basal Dicytopterans 384
16.6 Evolution of Key Enzyme Systems: Endoglucanases and Nitrogenases 386
16.7 Blattabacterium 387
16.8 Parabasalids 388
16.9 Termitomyces 392
16.10 Spirochetes 393
16.11 Clostridiales 394
16.12 Archaea 395
16.13 Conclusions 398
References 400
Part III Modern Methods for Studying Intestinal Methods
17 TheMicrobial Soil Flora: Novel Approaches for Accessing the Phylogenetic and
Physiological Diversity of Prokaryotes 407
Alexander H. Treusch, Christa Schleper
17.1 Introduction 407
17.2 The Modern Classical Approach 408
17.3 HowMany Prokaryotic Species Live in Soil? 409
17.4 Molecular Approaches to DescribeMicrobial Diversity 411
17.5 The Current Picture of Prokaryotic Diversity in Soil 413
17.6 Studying Physiological Diversity 415
17.7 Environmental Genomic Studies 417
17.8 Conclusions 419
References 420
18 Micromanipulation Techniques for the Isolation of Single Microorganisms 425
Jürgen Fröhlich, Helmut König
18.1 Introduction 425
18.2 Micromanipulation Techniques 426
18.2.1 Historical Perspective 426
18.2.2 Modern Equipment 427
18.3 Isolation Techniques 429
18.3.1 BactotipMethod 429
18.3.2 MembraneMethod 431
18.3.3 Efficiency of the Cloning Procedure 431
18.3.4 Described Applications 432
18.4 Laser Micromanipulation Systems 433
18.4.1 Optical Tweezers 433
18.4.2 LaserMicrodissection 434
18.5 Conclusions 434
References 435
19 Localization and Visualization of Microbial Community Structure and Activity in Soil
Microhabitats 439
Michael Schmid, Draženka Selesi, Michael Rothballer, Michael Schloter, Natuschka Lee, Ellen
Kandeler, Anton Hartmann
19.1 Introduction 439
19.2 Localization andMicrovisualization Approaches 440
19.3 In Situ Composition Analysis of Bacterial Communities 442
19.3.1 The Fluorescence in Situ Hybridization (FISH) Technique
19.3.2 Recent Developments Towards Improved FISH Techniques 444
19.3.3 Immunological Techniques 448
19.4 In Situ Activity ofMicrobial Communities 449
19.4.1 InSituAssessment of General and SpecificEnzymatic Activities of Cells 449
19.4.2 Isotope Tracer Techniques . 450
19.4.3 Specific Fluorescence Labelling/Tagging Techniques 454
19.5 Conclusions 455
References 455
20 Microsensors for the Study ofMicroenvironments and Processes in the Intestine of
Invertebrates 463
Andreas Schramm
20.1 Introduction 463
20.2 Microsensors Available 463
20.3 Microsensors in the Study of Invertebrate Guts . 466
20.4 Practical Considerations 468
20.4.1 Construction and Purchase of Sensors and Equipment 468
20.4.2 Fixation of Animals, Gut Preparation andMeasuring Conditions 468
20.5 Conclusions 470
References 471
Subject Index 475
Berminat?
Email: zanetapm@gmail.com
0 comments:
Post a Comment