Tuesday, March 31, 2015

The Mathematic That Every Secondary School Math Teacher Needs to Know






The Mathematic That Every Secondary School Math Teacher Needs to Know
Buku ini diterbitkan  tahun 2011 oleh  Routledge, Taylor & Francis. Adalah buku edisi Pertama.



Judul:   The Mathematic That Every Secondary School Math Teacher Needs to Know
Oleh:   Alan Sultan, et al
Penerbit:  Routledge, Taylor & Francis
Tahun: 2011
Jumlah Halaman:  761  hal.


Penulis:

Alan Sultan
Queens College of the City University of New York

Alice F. Artzt
Queens College of the City University of New York

Lingkup Pembahasan:

Buku ini mengemukakan bahwa untuk lebih spesifik, guru matematika perlu memiliki pengetahuan tentang bagaimana membuat pemahaman dan keterampilan matematika diakses bagi semua siswanya. Misalnya,  guru akan memberitahu Anda bahwa tahun demi tahun siswa mereka mengalami kesulitan memahami spesifik topic tertentu dalam kurikulum. Dalam buku ini, kita membahas  bagian-bagian kesulitan yang khas dan kesalahpahaman umum yang dialami siswa. Kami meneliti mengapa kesulitan-kesulitan ini ada dan pendekatan matematika guru dapat digunakan dalam menjelaskan konsep dan prosedur. Dengan demikian,  buku ini menekankan penggunaan beberapa cara untuk mewakili dan memecahkan masalah sehingga Anda akan dapat memenuhi kebutuhan siswa yang  paling  pasti akan memiliki gaya belajar dan kemampuan yang beragam. Penggunaan teknologi digabungkan untuk menambah beberapa cara masalah dapat direpresentasikan. Selain itu, kemampuannya secara dinamis merupakan konsep dan mensimulasikan masalah, teknologi dapat digunakan untuk membantu siswa memecahkan masalah melalui penemuan, pengenalan pola, dan penalaran induktif.
Sepanjang buku ini  mengemukakan kajian kekuatan dan kelemahan dari teknologi yang berbeda mewakili ide-ide matematika, serta memberikan referensi ke beberapa informasi dan website terkadang interaktif yang akan berguna bagi Anda dan siswa Anda.
Buku ini juga mengemukakan bahwa selain meningkatkan kompetensi siswa dan pemahaman matematika, bagian penting lain dari pekerjaan guru adalah untuk dapat menarik siswa dalam materi pelajaran.


Daftar Isi:

Preface/Introduction xvii
Notes to the Reader/Professor xxi
Acknowledgments xxvii
CHAPTER 1 Intuition and Proof 1

    1.1 Introduction 1
    1.2 Can Intuition Really Lead Us Astray? 1
    1.3 Some Fundamental Methods of Proof 8
        1.3.1 Direct Proof 9
        1.3.2 Proof by Contradiction 10
        1.3.3 Proof by Counterexample 12
        1.3.4 The Finality of Proof 13
CHAPTER 2 Basics of Number Theory 17
    2.1 Introduction 17
    2.2 Odd, Even, and Divisibility Relationships 17
    2.3 The Divisibility Rules 25
    2.4 Facts about Prime Numbers 31
        2.4.1 The Prime Number Theorem 36
    2.5 The Division Algorithm 38
    2.6 The Greatest Common Divisor (GCD) and the Euclidean Algorithm 42
    2.7 The Division Algorithm for Polynomials 48
    2.8 Different Base Number Systems 51
    2.9 Modular Arithmetic 56
        2.9.1 Application: RSA Encryption 59
    2.10 Diophantine Analysis 61
CHAPTER 3 Theory of Equations 69
    3.1 Introduction 69
    3.2 Polynomials: Modeling, Basic Rules, and the Factor Theorem 70
    3.3 Synthetic Division 75
    3.4 The Fundamental Theorem of Algebra 80
    3.5 The Rational Root Theorem and Some Consequences 85
    3.6 The Quadratic Formula 90
    3.7 Solving Higher Order Polynomials 95
        3.7.1 The Cubic Equation 95
        3.7.2 Cardan’s Contribution 100
        3.7.3 The Fourth Degree and Higher Equations 101
    3.8 The Role of the Graphing Calculator in Solving Equations 103
        3.8.1 The Newton–Raphson Method 104
        3.8.2 The Bisection Method–Unraveling the Workings of the Calculator 108
CHAPTER 4 Measurement: Area and Volume 113
    4.1 Introduction 113
    4.2 Areas of Simple Figures and Some Surprising Consequences 113
    4.3 The Circle 125
        4.3.1 An Informal Proof of the Area of a Circle 126
        4.3.2 Archimedes’ Proof of the Area of a Circle 127
        4.3.3 Limits And Areas of Circles 130
        4.3.4 Using Technology to Find the Area of a Circle 131
        4.3.5 Computation of π 133
        4.3.6 Finding Areas of Irregular Shapes 139
    4.4 Volume 146
        4.4.1 Introduction to Volume 146
        4.4.2 A Special Case: Volumes of Solids of Revolution 150
        4.4.3 Cavalieri’s Principle 153
        4.4.4 Final Remarks 154
CHAPTER 5 The Triangle: Its Study and Consequences 159
    5.1 Introduction 159
    5.2 The Law of Cosines and Surprising Consequences 159
        5.2.1 Congruence 161
    5.3 The Law of Sines 165
    5.5 Sin(A+ B) 175
    5.6 The Circle Revisited 179
        5.6.1 Inscribed and Central Angles 180
        5.6.2 Secants and Tangents 183
        5.6.3 Ptolemy’s Theorem 185
    5.7 Technical Issues 191
    5.8 Ceva’s Theorem 195
    5.9 Pythagorean Triples 200
    5.10 Other Interesting Results about Areas 204
        5.10.1 Heron’s Theorem 205
        5.10.2 Pick’s Theorem 206
CHAPTER 6 Building the Real Number System 215
    6.1 Introduction 215
    6.2 Part 1: The Beginning Laws: An Intuitive Approach 216
    6.3 Negative Numbers and Their Properties: An Intuitive Approach 220
    6.4 The First Rules for Fractions 224
    6.5 Rational and Irrational Numbers: Going Deeper 231
    6.6 The Teacher’s Level 234
    6.7 The Laws of Exponents 242
        6.7.1 Integral Exponents 242
    6.8 Radical and Fractional Exponents 245
        6.8.1 Radicals 245
        6.8.2 Fractional Exponents 247
        6.8.3 Irrational Exponents 250
    6.9 Working with Inequalities 253
    6.10 Logarithms 259
        6.10.1 Rules for Logarithms 263
    6.11 Solving Equations 267
        6.11.1 Some Issues 268
        6.11.2 Logic Behind Solving Equations 269
        6.11.3 Equivalent Equations 272
    6.12 Part 2: Review of Geometric Series: Preparation for Decimal Representation 277
    6.13 Decimal Expansion 280
    6.14 Decimal Periodicity 289
    6.15 Decimals: Uniqueness of Representation 293
    6.16 Countable and Uncountable Sets 297
        6.16.1 Algebraic and Transcendental Numbers Revisited 303
CHAPTER 7 Building the Complex Numbers 307
    7.1 Introduction 307
    7.2 The Basics 307
        7.2.1 Operating on the Complex Numbers 308
    7.3 Picturing Complex Numbers and Connections to Transformation Geometry 315
        7.3.1 An Interesting Problem 319
        7.3.2 The Magnitude of a Complex Number 323
    7.4 The Polar Form of Complex Numbers and De Moivre’s Theorem 325
        7.4.1 Roots of Complex Numbers 330
    7.5 A Closer Look at the Geometry of Complex Numbers 334
    7.6 Some Connections to Roots of Polynomials 340
    7.7 Euler’s Amazing Identity and the Irrationality of e 343
    7.8 Fractal Images 347
        7.8.1 Other Ways to Generate Fractal Images 351
    7.9 Logarithms of Complex Numbers and Complex Powers 352
CHAPTER 8 Induction, Recursion, and Fractal Dimension 357
    8.1 Introduction 357
    8.2 Recursive Relations 357
        8.2.1 Solving Recursive Relations 361
    8.3 Induction 372
        8.3.1 Taking Induction to a Higher Level 376
        8.3.2 Other Forms of Induction 378
    8.4 Fractals Revisited and Fractal Dimension 387
        8.4.1 The Chaos Game 389
        8.4.2 Fractal Dimension 390
CHAPTER 9 Functions and Modeling 397
    9.1 Introduction 397
    9.2 Functions 397
        9.2.1 The Historical Notion of Function 398
        9.2.2 Functions Today 398
        9.2.3 Functions – The More General Notion 400
        9.2.4 Ways of Representing Functions 401
    9.3 Modeling with Functions 406
        9.3.1 Some Types of Models 407
        9.3.2 Which Model Should We Use? 412
    9.4 What Does Best Fit Mean? 420
        9.4.1 What is Behind Finding the Line of Best Fit? 421
        9.4.2 How Well Does a Function Fit the Data? 425
    9.5 Finding Exponential and Power Functions That Fit Curves 427
        9.5.1 How Calculators Find Exponential and Power Regressions 428
        9.5.2 Things to Watch Out for in Curve Fitting 431
    9.6 Fitting Data Exactly With Polynomials 433
    9.7 1–1 Functions 439
        9.7.1 The Rudiments 439
        9.7.2 Why Are 1–1 Functions Important? 442
        9.7.3 Inverse Functions in More Depth 442
        9.7.4 Finding the Inverse Function 444
        9.7.5 Graphing the Inverse Function 446
CHAPTER 10 Geometric Transformations 451
    10.1 Introduction 451
    10.2 Transformations: The Secondary School Level 452
        10.2.1 Basic Ideas 453
    10.3 Bringing in the Main Tool – Functions 458
    10.4 The Matrix Approach – a Higher Level 466
        10.4.1 Reflections, Rotations, and Dilations 466
        10.4.2 Compositions of Transformations 469
        10.4.3 Reflecting about Arbitrary Lines 474
    10.5 Matrix Transformations 482
        10.5.1 The Basics 482
        10.5.2 Matrix Transformations in More Detail – A Technical Point 485
    10.6 Transforming Areas 492
    10.7 Connections to Fractals 497
        10.7.1 Translations 498
    10.8 Transformations in Three dimensions 504
    10.9 Reflecting on Reflections 507
CHAPTER 11 Trigonometry 513
    11.1 Introduction 513
    11.2 Typical Applications Using Angles and Basic Trigonometric Functions 514
        11.2.1 Engineering and Astronomy 514
        11.2.2 Forces Acting on a Body 516
    11.3 Extending Notions of Trigonometric Functions 523
        11.3.1 Trigonometric Functions of Angles More than 90 Degrees 524
        11.3.2 Some Useful Trigonometric Relationships 528
    11.4 Radian Measure 537
        11.4.1 Conversion 537
        11.4.2 Areas and Arc Length in Terms of Radians 539
    11.5 Graphing Trigonometric Curves 544
        11.5.1 The Graphs of Sin θ and Cos θ 545
        11.5.2 The Graph of y = Tan θ 552
    11.6 Modeling with Trigonometric Functions 555
    11.7 Inverse Trigonometric Functions 560
    11.8 Trigonometric Identities 567
    11.9 Solutions of Cubic Equations Using Trigonometry 575
    11.10 Lissajous Curves 578
    11.11 Vectors 581
        11.11.1 Basic Vector Algebra 582
        11.11.2 Components of Vectors 587
        11.11.3 Using Vectors to Prove Geometric Theorems 592
CHAPTER 12 Data Analysis and Probability 599
    12.1 Introduction 599
    12.2 Basic Ideas of Probability 600
        12.2.1 Different Approaches to Probability 600
        12.2.2 Issues with the Approaches to Probability 603
    12.3 The Set Theoretic Approach to Probability 605
        12.3.1 Some Elementary Results in Probability 608
    12.4 Elementary Counting 613
    12.5 Conditional Probability and Independence 618
        12.5.1 Some Misconceptions in Probability 623
    12.6 Bernoulli Trials 626
    12.7 The Normal Distribution 629
    12.8 Classic Problems: Counterintuitive Results in Probability 635
        12.8.1 The Birthday Problem 636
        12.8.2 The Monty Hall Problem 636
        12.8.3 The Gunfight 637
        12.8.4 Simulation 638
    12.9 Fair and Unfair Games 641
        12.9.1 Games Where No Money is Involved 641
        12.9.2 Games Where Money is Involved 643
        12.9.3 The General Notion of Expectation 644
        12.9.4 The Cereal Box Problem 646
    12.10 Geometric Probability 650
        12.10.1 Some Surprising Consequences 652
        12.10.2 Monte Carlo Revisited 654
    12.11 Data Analysis 658
        12.11.1 Plotting Data 659
        12.11.2 Mean, Median, Mode 664
    12.12 Lying with Statistics 669
        12.12.1 What Can you Do to Talk Back to Statistics? 673
CHAPTER 13 Introduction to Non-Euclidean Geometry 677
    13.1 Introduction 677
    13.2 Can We Believe Our Eyes? 678
        13.2.1 What Are the Errors in the Proofs? 683
    13.3 The Parallel Postulate 685
        13.3.1 What Can We Prove with the Parallel Postulate? 686
        13.3.2 What Can We Prove Without the Parallel Postulate? 688
    13.4 Undefined Terms 690
    13.5 Strange Geometries 692
        13.5.1 Hyperbolic Geometry 693
        13.5.2 Euclid’s Axioms in the Hyperbolic World 695
        13.5.3 Area in Hyperbolic Space 700
        13.5.4 Spherical Geometry 702
CHAPTER 14 Three Problems of Antiquity 705
    14.1 Introduction 705
    14.2 Some Basic Constructions 705
    14.3 Three Problems of Antiquity and Constructible Numbers 710
        14.3.1 Constructible Numbers 711
        14.3.2 Geometrically Constructible Numbers 711
        14.3.3 The Constructible Plane 713
        14.3.4 Solving the Three Problems of Antiquity 716
Bibliography 721
Appendix 723
Index 729


Berminat?
Email: zanetapm@gmail.com





The Mathematic That Every Secondary School Math Teacher Needs to Know Rating: 4.5 Diposkan Oleh: Unknown

0 comments:

Post a Comment